ZVIDIA. /

Bigger bang with fewer sprites

Tristan Lorach

—

Overview

Current Explosion effects

New type of explosions

Back to procedural procedural noise & texturing
Details on the example

The demo

|"

|"

f

f

f

NVIDIA CONFIDENTIAL ﬁ V IDI h .

Actual explosion effects

<~ Most of the explosions are 2D billboards
easy to implement

f

Just a quad or a sprite for one element

f

Billboard contains an animation from a video
use a particle system to add complexity
-~ Drawbacks:

< Billboards intersect badly with the 3D scene

f

f

< Pay attention and you'’ll find out the same patterns
< 2D billboard aren’t volumes, evens through particles

NVIDIA CONFIDENTIAL ﬁ V I D l h .

Actual explosions

< Our purpose isn’t to replace typical technique

< Our purpose is to find out new technique for
specific cases

< Billboards Explosions are good for small ones:
-~ Small size help to hide artifacts
- Fast explosion fooling the eye about details

< But what about big explosions (in space, atomic) ?

NVIDIA CONFIDENTIAL ﬁ V I D l h .

New type of explosion

- Some explosions may converge to a solid object
May interact with the scene

Must respect the floor and other surfaces (explosion
Into a corridor...)

The eye wants to see it as a volume
Can be the central topic of the scene
- Explosions can take various forms
< Sphere, cone and complex mesh (mushroom)

- Explosions must tend to be unique in its details

f

f

f

f

<

NVIDIA CONFIDENTIAL ﬂ V I D l h .

New type of explosion

. New GPU’s allows us to do so

< At vertex level: displace the vertices and pre-
compute some parameters

< At fragment level: use procedural noise either from
scratch or through 3D (and 1D/2D) textures

- Still, the CPU will keep the job of providing the
basic mesh structure

< Provide a simple growth (our example)
< Provide a physical control of the mesh
-~ CPU for global behavior & GPU for near-surface
behavior <>
BVIDIA.

Drawbacks of this new technique

<~ More expensive in computation : more triangles,
complex vertex & fragment processing

< Difficult to fine-tune the parameters
< Everything is almost arbitrary
<~ Need artists to realize good simulation
< Any math won’t be enough
- We cannot use a video of fire
< The evolution in time must behave correctly
< Colors at fragment level are arbitrary. New ideas are

welcome
<
NVIDIA CONFIDENTIAL ﬁ V I D l h "

Procedural noise for explosions

Noise is the solution
< Provide a near-unique result for each explosion
< Fooling the eye thanks to complexity

< Noise can
< displace the vertices
< contribute to the color blending

< Noise can be real-time calculated (Perlin)
<~ Noise can be stored into textures (3D)

< Fractal sum of noise is good to approach nature
phenomenon. <

f

NVIDIA CONFIDENTIAL ﬁ V I D l h .

Primitives for an explosion

< Plasma disc
< lllustrating the explosion’s shockwave

< The core of the explosion
< A growing sphere or a more complex mesh

< Some secondary explosion sources
- Some material going out of the explosion
-~ Some optical distortion from the heat of the

shockwave
- All can be using procedural texturing & and
procedural noise <
Con

NVIDIA CONFIDENTIAL ﬂ V I D l h .

Disadvantages of Procedural Texturing
& Procedural vertex displacement

< Compact in memory
- code is small (compared to textures)

<~ No fixed resolution
- "Infinite" detail, limited only by precision
< Unlimited extent
- can cover arbitrarily large areas, no repeating

-~ Parameterized
- can easily generate a large no. of variations on a

theme
< Solid texturing (avoids 2D mapping problem)
< We can add a 4™ dimension (time) <

|||||||||||||||||| BVIDIA.

Disadvantages of Procedural Texturing
& Procedural vertex displacement

< Computation time
- Hard to code and debug

< vertices are Displaced in the rendering pipeline.
< Resulting transformation cannot interact with the
scene

< Implement the same procedure in the CPU to
compute some values before the GPU

BVIDIA.

NVIDIA CONFIDENTIAL

|deal Noise Characteristics

<~ Can’t just use rand()! An ideal noise function:

-

b =

produces arepeatable pseudorandom value as a
function of its input (same input -> same output)

has a known range (typically [-1,1] or [0,1])

doesn't show obvious repeating patterns (i.e. period
IS large)

IS invariant under rotation and translation

- We want this noise to be smooth

NVIDIA CONFIDENTIAL ﬁ V I D l h .

What does Noise look like?

< Imagine creating a big block of random numbers
and blurring them:

...... CONFIDENTIAL BVIDIA.

What does Noise look like?

< Random values at integer positions
< Varies smoothly in-between. In 1D:

noise(x) 1

-1

This is value noise, gradient noise Is zero at
Integer positions

NVIDIA CONFIDENTIAL

I N A
vz 3 4 5 6 7S

o
<

BVIDIA.

Spectral Synthesis

- Noise by itself is not very exciting

< By summing together multiple noise signals at
different frequencies we can produce more
Interesting patterns with detail at several scales

- This is like Fourier synthesis (summing sine
waves)

- Each layer is known as an “octave” since the
frequency typically doubles each time

< Increase in frequency known as “lacunarity” (gap)
-~ Change in amplitude/weight known as “gain”
<

NVIDIA CONFIDENTIAL ﬂ V } l-} l h .

Fractal Sum

- Weighted sum of several layers of noise with
Increasing frequency and decreasing amplitude

- Fractal because of self-similarity at different scales
< Also known as “Fractional Brownian Motion” (fBm)
- Typically, octaves >= 4, lacunarity ~= 2.0, gain = 0.5

float fractal Sun(float3 p, int octaves, float lacunarity, float gain)
{
fl oat sum = O;
float anmp = 1;
for(int 1=0; i<octaves; i++) {
sum += anp * noise(p);
p *= lacunarity;
anp *= gain;
}

return sum C}*
) S
NVIDIA CONFIDENTIAL ﬂ V I D l h]

Fractal Sum

F‘s' *s **1' *:- w2

e e I e
? ’}*..,f...f.,) X
‘:‘ii ‘If “Ii ‘Ii:"j

.-'L'- :..-.._-l :.-'L'I :..-..,:”:.-

: .r’....r’....r’....r’...

NVIDIA CONFIDENTIAL

Turbulence

<~ Ken Perlin’s trick — assumes noise is sighed [-1,1]
< Exactly like fBm, but take absolute value of noise

< Introduces discontinuities that make the image
more “billowy”

float turbulence(float3 p, int octaves, float lacunarity, float gain)
{
fl oat sum = O;
float anmp = 1;
for(int 1=0; i<octaves; i++) {
sum += anp * abs(noi se(p));
p *= lacunarity;
anp *= gain;
}

return sum
} <=

NVIDIA CONFIDENTIAL ﬂ V I D l h .

Turbulence

RVIDIA.

NVIDIA CONFIDENTIAL

Vertex Shader Noise

- We don’t have texture lookups in the vertex shader

< Vertex noise used for procedural displacement of
vertices

- Calculating perturbed normals isn’t obvious

<~ We could calculate Normal at fragment level with

DDX, DDY:

float3 dx = (ddx(IN.worldpos.xyz));
float3 dy = (ddy(IN.worldpos.xyz));
float3 N = normalize(cross(dx,dy));

< But this will make the triangles appear
< In explosions, we’ll avoid this

<

NVIDIA CONFIDENTIAL ﬂ V I D l h .

Vertex Shader Noise

- Uses permutation and gradient table stored in
constant memory (rather than textures)

- Combines permutation and gradient tables into one
table of floatds — (g[i].x, g[il.y, g[i].z, perm[i])

- Table is duplicated to avoid modulo operations in
code

- Table size can be tailored to application
- Compiles to around 70 instructions for 3D noise

<

NVIDIA CONFIDENTIAL ﬂ V I D l h .

Vertex Shader Noise

p=(k+P[(j+P[i])%n])%n for 8 points around

TS
1
TR /@_’

e

{dx’,dy’,dz’}= scurve({dx’,dy’,dz’})

'

Pt ” noise = lerp dot products by {dx’,dy’,dz’}

NVIDIA CONFIDENTIAL

BVIDIA.

Typical Vertex Shader Noise Cg Code

float noise(float3 v, const uniformfloat4 pg[B2])

{
float3 i = frac(v * BR) * B; /1 index between 0 and B-1
float3 f = frac(v); /1 fractional position
/1 lookup in pernutation table
float2 p;)

p[O] = pg[i[0O] I.-w
p[1] = pg[i[O] + 1].w

p=p+i[l];
float4 b: > @
b[O] pg[p[O]

=]\N;
b[1] = pgl p[1]].w
b[2] = pg[p[0] + 1].w
b[3] = pgl p[1] + 1].w Z
b=Db+i[2];
/1 conpute dot products between gradients and vectors
float4 r;

r[o]) R
ri1] dot (pg[b[1] Xyz, - float3(1.0f, 0.0f, 0.0f));

].
].

r[2] dot (pg[b[2]].xyz, - float3(0.0f, 1.0f, 0.0f));
].

r[3] dot (pg[b[3] Xyz, - float3(1.0f, 1.0f, 0.0f));
float4 r1; >

dot (pg[b[O]].xyz,

—h —h —h —h

rif[0] = dot(pg[b[O] + 1].xyz, f - float3(0.0f, 0.0f, 1.0f))
ri[1] = dot(pg[b[1l] + 1].xyz, f - float3(1.0f, 0.0f, 1.0f));
ri[2] = dot(pg[b[2] + 1].xyz, f - float3(0.0f, 1.0f, 1.0f));
ri[3] = dot(pg[b[3] + 1].xyz, f - float3(1.0f, 1.0f, 1.0f))

/1 interpolate <
f s_curve(f);
r

lerp(r, r1, f[2]);
lerp(r.xyyy, r.zww, f[1]);
return lerp(r.x, f[o]);

r

) e @‘]

NVIDIA CONFIDENTIAL ﬂv l D I h .

Pixel Shader Noise

<~ Almost the same as Vertex shader
- Gradient noise over R3, scalar output

< Uses 2 1D textures as look-up tables:

<~ Permutation texture — luminance alpha format, 256
entries, random shuffle of values from [0,255].
Holds p[i] and p[i+1] to avoid extra lookup.

< Gradient texture — signed RGB format, 256 entries,
random, uniformly distributed normalized vectors

-~ Compiles to around 50 instructions

- But here we won’t use Such noise at fragment level

< We'll prefere 3D texture noise instead (faster) @}i
NVIDIA CONFIDENTIAL HVII.-}! h

Pixel Shader Noise using 3D Textures

< Pre-compute 3D texture containing random values

< Pre-filtering with cubic filter helps avoid linear
Interpolation artifacts

< 4 lookups into a single 64x64x64 3D texture
produces reasonable looking turbulence

< Uses texture filtering hardware
<~ Anti-aliasing comes for free via mip-mapping
< Period is low

NVIDIA CONFIDENTIAL ﬁ V I D l h .

Pixel Shader Noise using 3D Textures

(a+2)x°-(a+3)x%+1, x=[0, 1]

<~ Cubic filterina : f(x) = . 5
ax’-5ax?+8ax-4a, xe[l, 2]

< X =x0*f(1+x,a)+x1*f(x,a)+x2*f(1-x,a)+x3*f(2-x,a); (a=-0.75)
<
NVIDIA CONFIDENTIAL ﬁv 1 DI h]

Various 3D noise textures

< Noise <~ Abs Noise
(bicubicNoise3D(fx, fy, fz) + 1.0f)* 0.5f; (fabs(bicubicNoise3D(fx, fy, fz)));

NVIDIA CONFIDENTIAL

Various 3D noise textures

< Raw Noise < Veins
noise3D(fx, fy, fz) + 1.0f) * 0.5f 1 - 2 *(fabs(bicubicNoise3D(fx, fy, fz)))

NVIDIA CONFIDENTIAL

Applying color table for noise

< Perturb the color table with the noise (create
smoke/energy trail or natural spread effect)

-~ Get a new perturbed texcoord
s = clamp(IN.texCoord - (IN.texCoord * (noise*0.5+0.5)), 1/256.0,255.0/256.0);

< Lerp between perturbed & non-perturbed texcoords

s = lerp(s, IN.texCoord, IN.texCoord);
texture = f4dtex1D(BaseTexture, s) * NoiseAmp;

<

NVIDIA CONFIDENTIAL #v 1 D I h .

Our Example: Explosion core

< main part of the explosion
- Noise will be used to displace the vertices

< 3D noise textures will be used to represent various
burning stages in the fireball.

-~ The idea is to play with various parameters to
make the object grow like an explosion.

< to represent the dilatation of the gas
< to represent the rotational behavior of a gas
< to differentiate hot part from warm parts

. Use either a sphere or any other shape
P y P @‘;._—;.

NVIDIA CONFIDENTIAL ﬂ V I D l h .

Our Example: Various shapes

<2

NVIDIA CONFIDENTIAL ﬁv l D I .ﬁ. .

Demo: Explosion core at Vertex level

< 1t Displacement is done along the normal by
fetching the noise value at the Vtx world pos
< 2nd 3rd and 4t displacement along the Normal

< but we’ll first rotate the noise space before fetching
the value

< Rotation center is the original vertex position

- This effect will create a rotational behaviour of the
noise. -+

Noisel
<=

NVIDIA CONFIDENTIAL ﬂ V I D l h .

Demo: Explosion core at Vertex level

< Computing new vertex and passing data to the
fragment program

-~ Each 4 octave’s noise values are passed by one
interpolator : x,y, zand w for each

<~ The total normalized displacement (i.e. fractal sum)
value Is passed as a diffuse color component

~ Passing the displaced vertex coordinate

NVIDIA CONFIDENTIAL ﬁ V I D l h .

Demo: Explosion core at Fragment level

< Using fractal sum of 3D texture noise, BUT:

< Instead of having a gain=0.5 at each octave, we'll use 4
octave’s noise values from the Vertex program.

<« This will emphasize some frequencies needed to create the
burning parts.

<~ each octaves will appear/disappear like waves

| = tex3D(NoiseTexture, IN.worldpos.xyz)*IN.noisescalars.x;

float3 scaledpos = IN.worldpos.xyz * 2.0;

| += tex3D(NoiseTexture, scaledpos) * IN.noisescalars.y;

scaledpos *= 2.0; /
| += tex3D(NoiseTexture, scaledpos) * IN.noisescalars.z; I/

scaledpos *= 2.0;
<¢’%|

| += tex3D(NoiseTexture, scaledpos) * IN.noisescalars.w;
NVIDIA CONFIDENTIAL ﬁwiﬂl A-

Demo: Explosion core at Fragment level

< The total normalized displacement interpolator
used to fetch a 1D color table

< 0 for the smoke color, 1 for a bright color (fire)
< through animated scale-bias to change the look
- Use one of the 4 octave’s noise values (the 29 to
Interpolate between the previous 3D noise and the
color from 1D texture
- Make it sharp by X=X"3.
<~ Will create 2 parts
< very hot (3D noise for the burning magma)

2 cold : the smoke from 1D color table <
BVIDIA.

NVIDIA CONFIDENTIAL

Demo: Additional explosions

-~ The main object is displaced along its normals.
< We would like some concavity.

< Not easy and expensive to get the partial derivatives
for the noise field to change the normals.

- Add some additional explosions like any particle
systems

<~ Lower Tessellation for smaller objects with shorter
lifetime

- We must fit to the surface of the main explosion

< We must implement the same algorithm as the
Vertex program

< get randomly a point onto the noisy surface when <

article is being born -
NVIDIACONFIDENTIALp g HVII.-}! h

Demo: Plasma Disc effect

~ Disc is a simple strip.
- Everything at the fragment level. Very few polygons
< Disc is 2D, so using a 2D+time noise function (x,t,z)

. Noise is Made of Absolute noise values

- A color Range with lerp() operation can create the bright

border at R1 and the fadeout at R2

NVIDIA CONFIDENTIAL

RV

s = clamp(IN.texCoord - (IN.texCoord *

(noise*0.5+0.5)),
1/256.0,255.0/256.0);

s = lerp(s, IN.texCoord, IN.texCoord);

texture = f4tex1D(Tex, s) * NoiseAmp;

<
BVIDIA.

Demo: Shockwave heat effect

- Compositing 2 P-buffers to the frame-buffer
< First P-Buffer: the RGB scene

- Second P-Buffer: the 2D offset map using R & G
components made from invisible parts of objects

< Invisible part of the disc : a cylinder around the disc
- Fade out vertically with 1D texture

- Fade out horizontally by lighting from the eye (dot
product) and getting exponential value (lit(1,eye _dot_n,5))

- 2D Offset scale is depending on the perspective.
< Any object could contribute to this perturbation

NVIDIA CONFIDENTIAL ﬁ V I D l h .

Demo: Shockwave heat effect

Invisible cylinder of noise

<

NVIDIA CONFIDENTIAL ﬂ V] -Dl h .

To do next...

- Here : just a taste of what we can do...

- Add fourier for low frequencies

- add physical behavior for the explosion sphere
< Interact with the scene

- explosion spread with collisions of wall & floor

- Inside a corridor
<~ along a landscape

-~ work on transparency, depending on the density
< glow, lighting effects
...many optimizations to find <>
BVIDIA.

References

< “An Image Synthesizer”, Ken Perlin, Siggraph 1985
< “Improving Noise”, Ken Perlin, Siggraph 2002

< “Texturing & Modelling, A Procedural Approach”
Ebert et al.

- “*Advanced Renderman, Creating CGI for Motion
Pictures”, Anthony A. Apodaca, Larry Gritz

<~ “Animating Suspended Particles Explosions”,
Bryan E.Feldman, James F.O’Brien, Okan Arikan

- “*Smoke Simulation For Large Scale Phenomena”,
N. Rasmussen, D. Nguyen, W. Geiger, R. Fedkiw <
Con

NVIDIA CONFIDENTIAL ﬂ V E l-} l h .

NVIDIA CONFIDENTIAL

tlorach@nvidia.com

